Insplorion Acoulyte

Combine optical spectroscopy with QCM-D

Simultaneous real time measurements with Nanoplasmonic Spectroscopy (NPS) and Quartz Crystal Microbalance with Dissipation monitoring (QCM-D).

Insplorion Acoulyte

processes.

• Obtain real-time changes in dry mass (refractive index), wet (acoustic) mass, and vis-coelasticity for the same sample on the same surface and at the same time.

• Measure simultaneously under identical experimental conditions using Insplorion's Nanoplasmonic Spectroscopy (NPS) and Q-Sense's Quartz Crystal Microbalance with Dissipation monitoring (QCM-D).

• Understand complex surface and thin film The Insplorion Acoulyte fits directly onto Q-Sense Explorer (E1) and Analyzer (E4) instruments when equipped with the Q-Sense window module. Insplorion Acoulyte sensors are Q-Sensors with an NPS structure

Q-Sense QCM-D Technology

interface.

nsplorion's NPS Technology

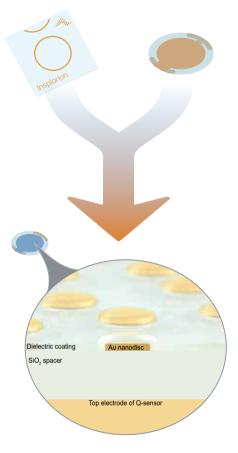
Quartz crystal microbalance with dissipation monitoring (QCM-D) utilizes an oscillating quartz disc to measure the mass and viscoelasticity of thin films on the disc surface. The resonance frequency of the oscillation decreases when a thin film is attached to the sensor. By measuring the dissipation, it is possible to determine if the adsorbed film is rigid or viscoelastic (soft).

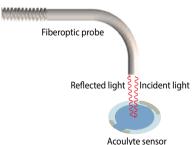
In Nanoplasmonic Spectroscopy (NPS), the localized surface plas-

mon resonance (LSPR) of a nanostructured sensor is used to probe minute changes in refractive index (related to optical/dry mass)

close to (< 30 nm from) the sensor surface. This enables extreme-

ly sensitive detection of processes occurring at the sensor/sample


Sensor Architecture


Each Acoulyte sensor consists of a Q-Sensor where the top electrode is coated with a SiO₂ layer on top of which the NPS sensing structure is placed. The sensors can be coated with a thin dielectric

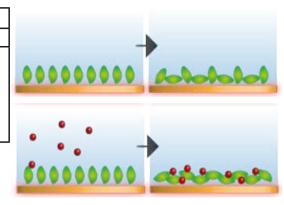
Standard coatings include SiO₂, Si₂N₄, Al₂O₂ and TiO₂.

Combined measurement setup

The Insplorion Acoulyte sensor is mounted in a standard Q-Sense Window Module and the Insplorion Acoulyte optical mount is placed on top of the module.

NPS and QCM-D complementarity

	Measures	Sensing depth
NPS	Dry mass	< 30 nm
QCM-D	Wet mass	> 300 nm
Acoulyte	Dry and Wet mass	Enables depth profiling


Changes in mass, viscoelasticity and refractive index (RI) in real-time.

Complementary information to understand complex processes fast and with confidence.

Molecular organization/conformation

What is detected?		
NPS	QCM-D	
Change in RI close to the surface due to changes in molecular mass and/or conformation	Change in mass due to molecular adsorption/ desorption or change in solvent content	
	Change in rigidity due to conformational changes	

Combined NPS and QCM-D measurements will help interprete the signals from molecular adsorption, conformational changes and solvent loss.

Molecular desorption (adsorption)

What is detected?		
NPS	QCM-D	
Change in RI close to the surface (<30 nm)	Change in mass throughout whole film	

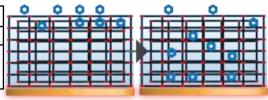
Time- and depth resolved measurement of molecular desorption (adsorption) from thick films (\sim 1 μ m). Using the Acoulyte it is also possible to discriminate swelling from adsorption / desorption events.

ACIALISTS ACIALISTS ACIALIST

Polymers, Hydrogel

Lipid bilayers

What is detected?		
NPS	QCM-D	
Increase in RI when vesicles adsorb	Increase in mass when vesicles adsorb	
Increase in RI when vesicles rupture	Decrease in mass when vesicles rupture	



The Acoulyte enables more detailed interpretation of the formation process of thin surface films

Gas adsorption/desorption

What is detected?				
NPS	QCM-D			
Change in RI at the sen- sor/sample interface	Change in mass on top of and throughout whole film.			

By combining QCM-D and NPS it is possible to achieve depth-profiling and to study diffusion times and mechanisms in surface supported films.

Metal-organic frameworks, polymers, hydrogels, porous films

"The Insplorion Acoulyte is based on an exciting technology. It complements our Q-Sense offering and further expands the range of powerful surface analysis options available to our customers."

Johan Westman,

Vice President, Analytical Instruments, Biolin Scientific

"With the Insplorion Acoulyte we now have a powerful tool to obtain complementary information at the same time about the diffusivity and the quantitative amount of molecules loaded in our membrane host structures based on metal-organic frameworks."

Prof. Dr. Christof Wöll
Karlsruher Institut für Technologie, Germany

"The integration of NPS sensors with acoustic sensor techniques for simultaneous measurements on the same sensing surface enables unparalleled capabilities for probing the hydration and non-hydration mass properties of biological and biomaterial systems, including dynamic interactions between various classes of biomacromolecules. Such capabilities open the door to a wide range of sensor applications across medicine and biotechnology."

Prof. Nam-Joon Cho Nanyang Technological University, Singapore

Insplorion AB | Medicinaregatan 8A | 413 90 Gothenburg | SWEDEN www.insplorion.com